MEMORANDUM

DATE: October 31, 2016
TO: Jerry Martens, Project Manager
Martens Enterprises LLC
FROM: Michael Read, PE, Principal, TENW
SUBJECT: Marian Meadows - EIS Consistency of Traffic Impacts
TENW Project No. 3475 - DRAFT FOR ONLY
This memorandum summarizes the results of a focused traffic impact analysis of the proposed Marian Meadows, a residential subdivision and recreational project in unincorporated Kittitas County near Easton, WA. This analysis documents and review the relative traffic impacts originally evaluated and disclosed within the Marian Meadows Planned Unit Development, Traffic Impact Study, December 2006 (226 single family homes) and subsequent Marian Meadows Planned Unit Development Traffic Impact Study Addendum, May 2007 (443 single family homes) as part of an extensive EIS process. As the date of these studies are approaching 10 years old and given the substantial changes proposed in reduced buildout of the overall Marian Meadows project, this consistency analysis addresses:
> Review available City/County/WSDOT documents, analysis, and plans, including obtaining other traffic studies prepared in the Easton vicinity and other relevant traffic work.
> Perform p.m. peak hour furning movement counts at the Interchange of Lake Easton Road and $1-90$ to verify no significant change in existing local freeway access utilization has taken place since original EIS analyses in 2006/07.
> Update project trip generation analysis for the now proposed 113 -unit buildout, considering various mixes of residential unit types that may be applicable. This analysis also includes the proposed "for-sale" RV storage units with combined ownership camping facility. Study of up to 100 individual RV storage units is included. An additional RV sales/service facility for both residents/owners within the project also identifies trip generation of potential "external" retail sales.
> Prepare revised traffic forecasts and compare to previous traffic studies for confirmation of the consistency analysis of traffic impacts.
> Document existing and proposed nonmotorized facilities and review nonmotorized impacts and safety.
$>$
> Document continued surface mining operations and truck route conflicts (if any).
> Update transportation mitigation measures to eliminate or reduce potential impacts.
The above scope was review and approved by Kittitas County staff in July 2016.
A site vicinity map is provided in Figure 1.

Project Desc ription

The proposed Marian Meadows includes up to 113 residential units, of which 81 would be singlefamily homes and 32 apartment units. The approximately 560 acre site is located on the north side of Sparks Road and east of Country Drive in Easton, WA (see Figure 1). This analysis also includes up to 100 "for-sale" RV storage units with combined ownership camping facility. Vehicular access to the site is proposed onto Sparks Road via a new on-site private roadway buil Opublic standards. Project buildout is anticipated by year 2030. Secondary fire/emergency vehicle access is proposed onto Country Road, but this would be gated and locked for emergency use only. A preliminary site plan for the development of the initial plat is shown in Figure 2.

Project Trip Generation Analysis

Published trip rate equations compiled by the Institute of Transportation Engineers (ITE) Trip Generation, ${ }^{\text {th }}$ Edition, 2012, were used to estimate daily, a.m. and p.m. peak hour traffic that would be generated by the proposed completion of Marian Meadows using Single-Family Homes (ITE Land Use Code 210) and Apartments (ITE Land Use Code 220). As a conservative approach, the proposed on-site recreational RV units were assumed as Seasonal/Recreational Homes (ITE Land Use Code 260) rather than as RV campground slots given the higher trip generation rates. As provided in Attachment A, average and fitted curve equations were applied based upon the latest edition of the Trip Generation Manual and compared against the original project trip generation figures from the Marian Meadows EIS. In addition to these known elements, within the context of the RV condominium area a space has been identified for a 15,000 square-foot vehicle shop/part sales to support the RV community and other on-site residents. If open to the public, up to an additional 15 peak hour trips and 150 daily trips could be generated by this potential use. A separate detailed trip generation summary of this use is also included in Attachment A.

As shown in Table 1, the proposed buildout would generate approximately 1,294 daily, 98 a.m. peak hour (30 entering and 68 exiting), and 133 p.m. peak hour vehicular trips (79 entering and 54 exiting) with buildout of 113 residential housing units and 100 "for-sale" RV storage units. This however, represents a net decrease of approximately 2,695 fewer daily, 304 fewer a.m. peak hour, and 276 fewer p.m. peak hour vehicular than those trip generation levels evaluated in the Marian Meadows EIS (2006/07).

Table 1

Marian Meadows			
Trip Generation Summary			
Time Period	In	Out	Total
Marian Meadows Using Standard ITE Rates for 2016 Proposal			
Weekday AM Peak Hour	30	68	98
Weekday PM Peak Hour	79	54	133
Weekday Daily	647	647	1,294

Net Change from Marian Meadows ES (2006/07)

Weekday AM Peak Hour	-69	-235	-304
Weekday PM Peak Hour	-179	-97	-276
Weekday Daily	$-1,348$	$-1,347$	$-2,695$

Source: Trip Generation Manual, 9th Edition, ITE, 2012.

Intersection Levels of Service

Level of service (LOS) refers to the degree of congestion on a roadway or intersection. It is a measure of vehicle operating speed, travel time, travel delays, and driving comfort. A letter scale from A to F generally describes LOS. At signalized intersections, LOS A represents free-flow conditions-motorists experience little or no delays, and LOS F represents forced-flow conditionsmotorists experience an average delay in excess of 80 seconds per vehicle. The LOS reported for signalized intersections represents the average control delay for all vehicles entering the intersection. The LOS reported at stop-controlled intersections is also based on the average control delay (sec/veh), but is reported for stop controlled and yield movements only. Table 2 outlines the LOS criteria for signalized and unsignalized intersections based on these methodologies.

Table 2
Level of Service Criteria for Intersections

Level of Service	Signa lized Intersection Average Delay Range (sec)	Unsigna lized Intersection Delay Range (sec)
A	≤ 10	≤ 10
B	>10 to ≤ 20	>10 to ≤ 15
C	>20 to ≤ 35	>15 to ≤ 25
D	>35 to ≤ 55	>25 to ≤ 35
E	>55 to ≤ 80	>35 to ≤ 50
F	>80	>50

Source: "Highway Capacity Manual", Special Report 209, Transportation Research Board, 2010.
A summary of existing (2016) intersection levels of service are provided at all study intersections in Table 3. As shown, all existing study intersections currently operate at LOS A.

Table 3
2016 Intersection Levels of Service

Study Intersection	PM Peak Hour Delay (sec)		
V/C Ratio			
Stop Controlled Intersections			
\#1 I-90 EB Ramps/ Lake Easton Road (SB)	A	9.5	0.07
\#2 I-90 WB Ramps / Lake Easton Road (NB)	A	8.8	0.04
\#3 Sparks Road / Lake Easton Road (NB)	A	9.3	0.08
\#4 Sparks Road / Country Road (SB)	A	8.4	0.00

Source: TENW using Synchro 6.0. Worst movement or approach group reported only for stop controlled intersections.
Attachment B contains traffic counts collected during the p.m. peak hour at relevant study intersections in July 2016.

Non-Project Forecasts

Prior to beginning the analysis of traffic impacts associated with a reduced site plan for the proposed Marian Meadows project, TENW obtained new traffic count information within the study area to determine any changes that have occurred since the original EIS analysis. Based upon the observed historical growth in the immediate study area, a background growth rate of 2 percent per year was applied to 2016 traffic volumes documented as part of this traffic analysis. As the expected completion date will take a number of years to be built and occupied, a 2030 horizon year was assumed. Traffic volume forecasts for 2030 and historical counts are provided in Attachment C.

Project Trip Distribution

The distribution of the project trips was based on previous approved trip distribution assumptions from the Marian Meadows EIS, available access routes to/from the project site to regional freeway systems and directness or ease of circulation, and the overall distribution of local shopping/commercial areas and employment centers in the vicinity of the site. The resulting trip distribution of p.m. peak hour project trips is illustrated in Figure 4. Figure 5 overviews 2030 traffic volume forecasts with and without the proposed Marian Meadows project.

Traffic Operational Impacts

Estimated project intersection LOS impacts during the p.m. peak hour in 2030 are summarized in Table 4. As shown, all signalized and unsignalized study intersections are estimated to operate at LOS B or better with or without the project in 2030, with no resultant significant adverse traffic operational impacts expected to occur as a result of the project. All study intersections would meet adopted LOS standards for Kittitas County.

Detailed LOS summary worksheets and queuing estimates at the signalized study intersections are included in Attachment D.

Table 4
2030 PM Peak Hour Intersection Level of Service Impacts

Study Intersection	PM Peak Hour Without Project			PM Peak Hour With Project		
	LOS	Delay (sec)	V/C Ratio	LOS	Delay (sec)	V/C Ratio
Stop Controlled Intersections						
\#1 I-90 EB Ramps/ Lake Easton Road (SB)	A	9.9	0.10	B	11.0	0.15
\#2 I-90 WB Ramps/ Lake Easton Road (NB)	A	9.0	0.05	A	9.4	0.09
\#3 Sparks Road / Lake Easton Road (NB)	A	9.7	0.11	B	10.1	0.18
\#4 Sparks Road / Country Road (SB)	A	8.4	0.01	A	8.6	0.01
\#5 Sparks Road / Project Site Access Road (SB)	--	--	--	A	8.5	0.05

Source: TENW using Synchro 6.0. Worst movement or approach group reported only for stop controlled intersections.

Site Access and Circ ulation

The primary access roadway is proposed onto Sparks Road at an existing driveway connection approximately 750 feet east of Country Drive. Secondary fire/emergency vehicle access would Ω be provided via a gated emergency vehicle connection off of Country Road to meet International Fire Code and Kittitas County development standards. Given the limited number of existing trips on Sparks Road, no significant congestion or delay is forecast at the proposed access roadway and no turn lanes are warranted. As part of design review, a detailed engineering exercise of turning radius and fire/emergency vehicle maneuvering analysis of the proposed internal roadway system would be required to ensure fire and emergency vehicle circulation to all portions of the development are provided.

The overall project site is served by a single access route consisting of Sparks Road, which as a potential blockage point at the Silver Creek Bridge. This existing bridge has a substandard width to current Kittitas County standards and traverses just west of Hawthorne Lane approximately $1 / 2$-mile west of the proposed site access roadway. The proposed alternative site access for fire/emergency vehicles via Country Road could accommodate blockages between Country Road and the site, however any blockages of the site due to an unlikely failure or blockage at the Silver Creek Bridge is not formally available. Potential alternatives include vehicle access via Easton State Airport during summer months (which has a roadway system that comprises an additional bridge over Siler Creek) or a resource road system to the east of the site through a surface mining operation which connects to Tree Farm Road at the next I-90 interchange east.

Nonmotorized Plan/Trails

As part of the overall site development, the applicant proposes to construct an on-site trail system for residents, tenants, and guests of the residential and RV condominium units. This would provide for nonmotorized circulation on-site between major development zones, and connect to adjacent informal trails and national forest properties north and east of the site for general recreational opportunities. Depending upon the proposed on-site roadway system designations (public versus private), the County has the authority to require additional pedestrian facilities under KCC 12.01.170.

Vic inity Truck Mining Operations

An existing surface mining operation currently is generating employee and resource haul trips using large trucks on a site southeast of the proposed Marian Meadows project. However, all truck haul trips and a majority of other employee/business trips associated with this operation utilize a gravel resource road that enters/exits the property via Tree Farm Road and associated I-90 interchange west of the primary route that would be utilized by the proposed Marian Meadows trips. While this site and associated mining operations can also be access via the end of Sparks Road, onl occasional and limited trips are generated onto Sparks Road itself. As such, no impacts or conflict Ω with large trucks associated with the existing surface mining operations are expected.

Conclusions

The Country's currently adopted LOS standard is LOS C. By 2030 with or without the proposed Marian Meadows development, all study intersections are expected to operate at LOS B or better during the weekday a.m. and p.m. peak hours which is better than the County's LOS standard. Therefore, no mitigation is required at the study intersections or site access roadway onto Sparks Road.

To mitigate for the unlikely potential of blockage of Sparks Road west of Country Road, the applicant should develop and submit a alternative site access plan of one or more options for County review that could be utilized by residents in the event of blockage of the primary site access road (namely Sparks Road).

If you have any questions regarding the information presented in this memo, please call me at (206) 361-7333 $\times 101$ or mikeread@tenw.com.

Attachment A

Trip Generation Analysis

Marian Meadows PUD (443 Lots to 113 Residential Units \& Recreational Uses)
Trip Generation
TENW Project No. 3475

Table 1 Comparative Trip Generation Estimate of Reduced Residential Units									
	Lots	Units ${ }^{1}$	$\begin{aligned} & \text { ITE } \\ & \text { LUC }^{2} \end{aligned}$	Directional Distribution		ITE Trip Rate ${ }^{3}$	Trips Generated		
				In	Out		In	Out	Total
Daily									
Marian Meadows 2016 (SF Residential Units)	81	DU	210	50\%	50\%	Based on Equation	432	433	865
Marian Meadows 2016 (MF Residential Units)	32	DU	220	50\%	50\%	Average Rate	106	107	213
Marian Meadows 2016 (Recreational Units)	100	DU	260	50\%	50\%	Average Rate	158	158	316
Full Builout (2007)	443	DU	210	50\%	50\%	Based on Equation	-2,044	-2,045	-4,089
Net =	-362	DU					-1,348	-1,347	-2,695
$\frac{\text { AM Peak Hour }}{\text { Marian Meadows } 2016 \text { (SF Residential Units) }}$					75\%	Based on Equation			
	81	DU	210	25\%			16	50	66
Marian Meadows 2016 (MF Residential Units)	32	DU	220	20\%	80\%	Average Rate	3	13	16
Marian Meadows 2016 (Recreational Units)	100	DU	260	67\%	33\%	Average Rate	11	5	16
Full Builout (2007)	443	DU	210	25\%	75\%	Based on Equation	-80	-240	-320
Net =	-343	DU					-69	-235	-304
PM Peak Hour									
Marian Meadows 2016 (SF Residential Units)	81	DU	210	63\%	37\%	Based on Equation	55	32	87
Marian Meadows 2016 (MF Residential Units)	32	DU	220	65\%	35\%	Average Rate	13	7	20
Marian Meadows 2016 (Recreational Units)	100	DU	260	41\%	59\%	Average Rate	11	15	26
Full Builout (2007)	443	DU	210	63\%	37\%	Based on Equation	-258	-151	-409
Net $=-362$		DU					-179	-97	-276
Notes:									
${ }^{1}$ DU is Dwelling Units.									
${ }^{2}$ Institute of Transportation Engineers (ITE), Land Use Code (LUC) 210 Sin	gle-Famil	Detached H							

Potential On-Site 15,000 SF Automobile Care Center
Marian Meadows Consistency Analysis

AM Peak Hour
Land Use
Automobile Care Center 942

AM Peak Rate	Unit	
2.25	15,000	square feet

\% Entering	\% Exiting	Entering	Exiting	Total Trips
66%	34%	22	11	34
	Subtotal	23	11	34
	Total with Internalization (60\%)	5	14	

PM Peak Hour

Land Use
Automobile Care Center 942

PM Peak Rate	Unit	
3.11	15,000	square

\% Entering	\% Exiting	Entering	Exiting	Total Trips
48%	52%	22	24	47
	Subtotal	22	24	47
	Total with Internalization (60\%)	9	10	19

Daily

Land Use Automobile Care Center	942	Daily Rate31.10	$\begin{gathered} \text { Unit } \\ 15,000 \end{gathered}$	square feet	$\begin{gathered} \text { \% Entering } \\ 50 \% \end{gathered}$	\% Exiting 50\%	Entering233	Exiting 233	Total Trips 467
						Subtotal	233	233	467
						Total with Inter	70 alization	$\begin{aligned} & 70 \\ & \%) \end{aligned}$	140

Source: ITE Trip Generation Manual, 9th Edition.

$$
\begin{gathered}
\text { Attachment B } \\
2016 \text { Traffic Counts }
\end{gathered}
$$

COUNTY DR E SPARKS RD

Date: Wed, Jul 13, 2016
Count Period: 4:00 PM to 6:00 PM
Peak Hour: 4:00 PM to 5:00 PM

	HV \%:	PHF
EB	0.0%	0.61
WB	0.0%	0.58
NB	-	-
SB	33.3%	0.38
TOTAL	3.7%	0.75

Two-Hour Count Summaries

Interval Start	E SPARKS RD				E SPARKS RD				0				COUNTY DR				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	1	3	1	0	0	0	1	0	0	0	0	0	0	0	0	1	7	0
4:15 PM	0	2	2	0	0	0	3	0	0	0	0	0	0	0	0	2	9	0
4:30 PM	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	3	0
4:45 PM	0	3	4	0	0	0	1	0	0	0	0	0	0	0	0	0	8	27
5:00 PM	0	0	3	0	0	0	1	0	0	0	0	0	0	0	0	1	5	25
5:15 PM	0	3	1	0	0	0	1	0	0	0	0	0	0	1	0	1	7	23
5:30 PM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	23
5:45 PM	0	1	3	0	0	0	3	0	0	0	0	0	0	0	0	1	8	23
Count Total	2	14	14	0	0	0	12	0	0	0	0	0	0	1	0	7	50	0
Peak Hour	2	8	7	0	0	0	7	0	0	0	0	0	0	0	0	3	27	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	0	0	0	0	0	3	0	0	0	3	0	0	0	0	0
4:15 PM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0
5:30 PM	0	0	0	0	0	1	0	0	1	2	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	1	1	6	0	0	1	7	0	0	0	0	0
Peak Hr	0	0	0	1	1	4	0	0	0	4	0	0	0	0	0

Attachment C
 2030 Forecasts and Historical Counts

Turning Movement Volumes - PM Peak Hour
Project Name: Marian Meadows EIS Consistency Analysis
Project \#:
Peak Hour: PM Peak

Attachment D
 Intersection LOS Summary Sheets

	\rangle		4	\dagger	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	M			\uparrow	\uparrow		
Sign Control	Free			Stop	Stop		
Grade	0\%			0\%	0\%		
Volume (veh/h)	9	73	63	2	2	11	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	10	79	68	2	2	12	
Pedestrians							
Lane Width (ft)							
Walking Speed (fts)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX , platoon unblocked							
vC , conflicting volume	0		72	59	99	0	
$\mathrm{vC1}$, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	0		72	59	99	0	
tC , single (s)	4.1		7.1	6.5	6.5	6.2	
tC, 2 stage (s)							
tF (s)	2.2		3.5	4.0	4.0	3.3	
p0 queue free \%	99		92	100	100	99	
cM capacity (veh/h)	1623		902	827	786	1085	
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	89	71	14				
Volume Left	10	68	0				
Volume Right	79	0	12				
cSH	1623	900	1025				
Volume to Capacity	0.01	0.08	0.01				
Queue Length 95th (ft)	0	6	1				
Control Delay (s)	0.8	9.3	8.6				
Lane LOS	A	A	A				
Approach Delay (s)	0.8	9.3	8.6				
Approach LOS		A	A				
Intersection Summary							
Average Delay			4.9				
Intersection Capacity Utilization			21.9\%	ICU Level of Service			A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis
4: Sparks Rd \& Country Dr

HCM Unsignalized Intersection Capacity Analysis
4: Sparks Rd \& Country Dr

	\rangle		4	\dagger	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	\%			\uparrow	$\hat{\square}$		
Sign Control	Free			Stop	Stop		
Grade	0\%			0\%	0\%		
Volume (veh/h)	1	156	139	3	3	15	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	1	170	151	3	3	16	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft / s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	0		105	87	172	0	
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	0		105	87	172	0	
tC, single (s)	4.1		7.1	6.5	6.5	6.2	
$\mathrm{tC}, 2$ stage (s)							
tF (s)	2.2		3.5	4.0	4.0	3.3	
p0 queue free \%	100		82	100	100	98	
cM capacity (veh/h)	1623		858	803	721	1085	
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	171	154	20				
Volume Left	1	151	0				
Volume Right	170	0	16				
cSH	1623	857	1001				
Volume to Capacity	0.00	0.18	0.02				
Queue Length 95th (ft)	0	16	1				
Control Delay (s)	0.1	10.1	8.7				
Lane LOS	A	B	A				
Approach Delay (s)	0.1	10.1	8.7				
Approach LOS		B	A				
Intersection Summary							
Average Delay			5.1				
Intersection Capacity Utilization			30.9\%	ICU Level of Service			A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis
4: Sparks Rd \& Country Dr

